Вторник, 07.05.2024, 12:34
Интересный сайт Antona
Приветствую Вас Гость | RSS
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Форум » В помощь учащимся » Химия » Полимер (Подробный школьный реферат.)
Полимер
AntonДата: Среда, 24.02.2010, 20:12 | Сообщение # 1
Генерал-майор
Группа: Администраторы
Сообщений: 342
Репутация: 0
Статус: Offline
Историческая справка.

Термин “полимерия” был введен в науку И.Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содержание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.
Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами”). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол),
Химия полимеров возникла только в связи с созданием А.М.Бутлеровым теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее свое развитие наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г.Бушарда, У.Тилден, немецкий учёный К Гарриес, И.Л.Кондаков, С.В.Лебедев и другие). В 30-х годов было доказано существование свободнорадикального и ионного механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У.Карозерса.
С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

Полимеры - химические соединения с высокой мол. массой (от нескольких тысяч до многих миллионов), молекулы которых (макромо¬лекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.
Классификация.
По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открыnой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).
Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из оди¬наковых стереоизомеров или из различ¬ных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.
Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.
Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательно¬сти, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.
В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные,
основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

Свойства и важнейшие характеристики.
Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки , способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.
Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.
Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, сте¬реорегулярный полистирол - кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.
Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сши¬вание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто сущестенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.
Некоторые свойства полимеров, например раствори¬мость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств приме¬сей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.
Важнейшие характеристики полимеров - химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.

Получение.
Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и других методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных), Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углеродоэлемента (например, С=О, С=N, N=С=О) или непрочные гетероциклические группировки.

Полимеры в сельском хозяйстве
Сегодня можно говорить по меньшей мере о четырех основных направлениях использования полимерных материалов в сельском хозяйстве. И в отечественной и в мировой практике первое место принадлежит пленкам. Благодаря применению мульчирующей перфорированной пленки на полях урожайность некоторых культур повышается до 30%, а сроки созревания ускоряются на 10-14 дней. Использование полиэтиленовой пленки для гидроизоляции создаваемых водохранилищ обеспечивает существенное снижение потерь запасаемой влаги. Укрытие пленкой сенажа, силоса, грубых кормов обеспечивает их лучшую сохранность даже в неблагоприятных погодных условиях. Но главная область использования пленочных полимерных материалов в сельском хозяйстве - строительство и эксплуатация пленочных теплиц. В настоящее время стало технически возможным выпускать полотнища пленки шириной до 16 м, а это позволяет строить пленочные теплицы шириной в основании до 7,5 и длиной до 200 м. В таких теплицах можно все сельскохозяйственные работы проводить механизированно; более того, эти теплицы позволяют выращивать продукцию круглогодично. В холодное время теплицы обогреваются опять-таки с помощью полимерных труб, заложенных в почву на глубину 60-70 см.
С точки зрения химической структуры полимеров, используемых в тепличных хозяйствах такого рода, можно отметить преимущественное использование полиэтилена, непластифицированного поливинилхлорида и в меньшей мере полиамидов. Полиэтиленовые пленки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1-2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко.
Другая область широкого применения полимерных материалов в сельском хозяйстве - мелиорация. Тут и разнообразные формы труб и шлангов для полива, особенно для самого прогрессивного в настоящее время капельного орошения; тут и перфорированные пластмассовые трубы для дренажа. Интересно отметить, что срок службы пластмассовых труб в системах дренажа, напри мер, в республиках Прибалтики в 3-4 раза дольше, чем соответствующих керамических труб. Вдобавок использование пластмассовых труб, особенно из гофрированного поливинилхлорида, позволяет почти полностью исключить ручной труд при прокладке дренажных систем.
Два остальных главных направления использования полимерных материалов в сельском хозяйстве - строительство, особенно животноводческих помещений, и машиностроение.
Овцы в синтетических шубах
Овца, как известно, животное неразумное. Особенно - меринос. Знает ведь, что шерсть нужна хозяину чистой а все-таки то в пыли изваляется, то, продираясь по кус там, колючек на себя нацепляет. Мыть и чистить овечью шерсть после стрижки - процесс сложный и трудоемкий. Чтобы упростить его, чтобы защитить шерсть от загрязнений, австралийские овцеводы изобрели попону из полиэтиленовой ткани. Надевают ее на овцу сразу после стрижки, затягивают резиновыми застежками. Овца растет, и шерсть на ней растет, распирает попону, а резинки слабеют, попона все время как по мерке сшита. Но вот беда: под австралийским солнцем сам полиэтилен хрупким становится. И с этим справились с помощью аминных стабилизаторов. Осталось еще приучить овцу не рвать полиэтиленовую ткань о колючки и заборы.
Нумерованные животные
Начиная с 1975 года весь крупный рогатый скот, а также овцы и козы в государственных хозяйствах Чехословакии должны носить в ушах своеобразные сережки - пластмассовые таблички с указанием основных данных о животных. Эта новая форма регистрации животных должна заменить применявшееся ранее клеймение, что признано специалистами негигиеничным. Миллионы пластмассовых табличек должны выпускать артели местной промышленности.
Микроб - кормилец
Комплексную задачу очистки сточных вод целлюлозно-бумажного производства и одновременного производства кормов для животноводства решили финские ученые. Специальную культуру микробов выращивают на отработанных сульфитных щелоках в специальных ферментаторах при 38° С, одновременно добавляя туда аммиак. Выход кормового белка составляет 50-55%; его с аппетитом поедают свиньи и домашняя птица.
Синтетическая травка
Традиционно принято многие спортивные мероприятия проводить на площадках с травяным покрытием. Футбол, теннис, крокет... К сожалению, динамичное развитие спорта, пиковые нагрузки у ворот или у сетки приводят к тому, что трава не успевает подрасти от одного состязания до другого. И никакие ухищрения садовников не могут с этим
справиться. Можно, конечно, проводить аналогичные состязания на площадках, скажем, с асфальтовым покрытием, но как же быть с традицион¬ными видами спорта? На помощь пришли синтетические материалы. Полиамидную пленку толщиной 1/40 мм (25 мкм) нарезают на полоски шириной 1,27 мм, вытягивают их, извивают, а затем переплетают так, чтобы получить легкую объемную маcсу, имитирующую траву. Во избежание пожара к полимеру загодя добавляют огнезащитные средства, а чтобы из-под ног у спортсменов не посыпались электрическое искры -антистатик. Коврики из синтетической травы наклеивают на подготовленное основание - и вот зам готов травяной корт или футбольное поле, или иная спортивная площадка. А по мере износа отдельные участки игрового поля можно заменять новыми ковриками, изготовленными по той же технологии и того же зеленого цвета.

Полимеры в машиностроении
Ничего удивительного в том, что эта отрасль - главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1976 1. маши¬ностроение нашей страны потребило 800000 т пласт масс, а в 1960 г. - всего 116 000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37—38% всех выпускающихся в нашей стране пластмасс, а 1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизится потребность, а в том, что другие отрасли народного хозяйства стали при¬менять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности еще более интенсивно.
При этом уместно отметить, что в последние годы несколько изменилась и функция полимерных материалов в любой отрасли. Полимерам стали доверять все более и более ответственные задачи. Из полимеров стали изготавливать все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, и в то же время все чаще полимеры стали применяться в изготовлении крупногабаритных корпусных деталей машин и механизмов, несущих значительные нагрузки. Ниже будет подробнее рассказано о примеении полимеров в автомобильной и авиационной промышленности, здесь же упомянем лишь один примечательный факт: несколько лет назад по Москве ходил цельнопластмассовый трамвай. А вот другой факт: четверть всех мелких судов - катеров, шлюпок, лодок - теперь строится из пластических масс.
До недавних пор широкому использованию полимерных материалов в машиностроении препятствовали два, казалось бы, общепризнанных недостатка полимеров: их низкая (по сравнению с марочными сталями) прочность и низкая теплостойкость. Рубеж прочностных свойств полимерных материалов удалось преодолеть переходом к композиционным материалам, главным образом стекло и углепластикам. Так что теперь выражение “пластмасса прочнее стали” звучит вполне обоснованно. В то же время полимеры сохранили свои позиции при массовом изготовлении огромного числа тех деталей, от которых не требуется особенно высокая прочность: заглушек, штуцеров, колпачков, рукояток, шкал и корпусов измерительных приборов. Еще одна область, специфическая именно для полимеров, где четче всего проявляются их преимущества перед любыми иными материалами, - это область внутренней и внешней отделки.
То же самое можно сказать и о машиностроении. Почти три четверти внутренней отделки салонов легковых автомобилей, автобусов, самолетов, речных и морских судов и пассажирских вагонов выполняется ныне из декоративных пластиков, синтетических пленок, тканей, искусственной кожи. Более того, для многих машин и аппаратов только использование антикоррозионной отделки синтетическими материалами обеспечило их надежную, долговременную эксплуатацию. К примеру, многократное использование изделия в экстремальных физико-технических условиях (космосе) обеспечивается, в частности, тем, что вся его внешняя поверхность покрыта синтетическими плитками, к тому же приклеенными синтетическим полиуретановым или полиэпоксидным клеем. А аппараты для химического производства? У них внутри бывают такие агрессивные среды, что никакая марочная сталь не выдержала бы. Единственный выход - сделать внутреннюю облицовку из платины или из пленки фторопласта. Гальванические ванны могут работать только при условии, что они сами и конструкции подвески покрыты синтетическими смолами и пластиками.
Широко применяются полимерные материалы и в такой отрасли народного хозяйства, как приборостроение. Здесь получен самый высокий экономический эффект в среднем в 1,5-2,0 раза выше, чем в других отраслях машиностроения. Объясняется это, в частности тем что большая часть полимеров перерабатывается в приборостроении самыми прогрессивными способами что повышает уровень полезного использования (и безотходность отходность) термопластов, увеличивает коэффициент замены дорогостоящих материалов. Наряду с этим значительно снижаются затраты живого труда. Простейшим и весьма убедительным примером может служить изготовление печатных схем: процесс, не мыслимый без полимерных материалов, а с ними и полностью автоматизированный.
Есть и другие подотрасли, где использование полимерных материалов обеспечивает и экономию материальных и энергетических ресурсов, и рост производительности труда. Почти полную автоматизацию обеспечило применение полимеров в производстве тормозных систем для транспорта. Неспроста практически все функциональные детали тормозных систем для автомобилей и около 45% для железнодорожного подвижного состава делаются из синтетических пресс-материалов. Около 50% деталей вращения и зубчатых колес изготовляется из прочных конструкционных полимеров. В последнем случае можно отметить две различных тенденции. С одной стороны, все чаще появляются сообщения об изготовлении зубчатых колес для тракторов из капрона. Обрывки отслуживших свое рыболовных сетей, старые чулки и путанку капроновых волокон переплавляют и формуют в шестерни. Эти шестерни могут работать почти без износа в контакте со стальными, вдобавок такая система не нуждается в смазке и почти бесшумна. Другая тенденция - полная замена металлических деталей в редукторах на детали из углепластиков. У них тоже отмечается резкое снижение механических потерь, долговременность срока службы.
Еще одна область применения полимерных материалов в машиностроении, достойная отдельного упоминания, - изготовление металлорежущего инструмента. По мере расширения использования прочных сталей н сплавов все более жесткие требования предъявляются к обрабатывающему инструменту. И здесь тоже на выручку инструментальщику и станочнику приходят пластмассы. Но не совсем обычные пластмассы сверхвысокой твердости, такие, которые смеют поспорить даже с алмазом. Король твердости, алмаз, еще не свергнут со своего трона, но дело идет к тому. Некоторые окислы (например из рода фианитов), нитриды, карбиды, уже сегодня демонстрируют не меньшую твердость, да к тому же и большую термостойкость. Вся беда в том, что они пока еще более дороги, чем природные и синтетические алмазы, да к тому же им свойствен “королевский порок” - они в большинстве своем хрупки. Вот и приходится, чтобы удержать их от растрескивания, каждое зернышко такого абразива окружать полимерной упаковкой чаще всего из фенолформальдегидных смол. Поэтому сегодня три четверти абразивного инструмента выпускается с применением синтетических смол.
Таковы лишь некоторые примеры н основные тенденции внедрения полимерных материалов в подотрасли машиностроения. Самое же первое место по темпам роста применения пластических масс среди других подотраслей занимает сейчас автомобильная промышленность. Десять лет назад в автомашинах использовали от 7 до 12 видов различных пластиков, к концу 70-х годов это число перешагнуло за 30. С точки зрения химической структуры, как и следовало ожидать, первые места по объему занимают стирольные пластики, поливинилхлорид и полиолефины. Пока еще немного уступают им, но активно догоняют полиуретаны, полиэфиры, акрилаты и другие полимеры. Перечень деталей автомобиля, которые в тех или иных моделях в наши дни изготовляют из полимеров, занял бы не одну страницу. Кузова и кабины, инструменты и электроизоляция, отделка салона и бамперы, радиаторы и подлокотники, шланги, сиденья, дверцы, капот. Более того, несколько разных фирм за рубежом уже объявили о нача¬ле производства цельнопластмассовых автомобилей. Наиболее характерные тенденции в применении пластмасс для автомобилестроения, в общем, те же, что и в других подотраслях. Во-первых, это экономия материалов: безотходное или малоотходное формование больших блоков и узлов. Во-вторых, благодаря использованию легких и облегченных полимерных материалов снижается общий вес автомобиля, а значит, будет экономиться горючее при его эксплуатации. В-третьих, выполненные как единое целое, блоки пластмассовых деталей существенно упрощают сборку и позволяют экономить живой труд.
Кстати, те же преимущества стимулируют и широкое применение полимерных материалов в авиационной промышленности. Например, замена алюминиевого сплава графитопластиком при изготовлении предкрылка крыла самолета позволяет сократить количество деталей с 47 до 14, крепежа - с 1464 до 8 болтов, снизить вес на 22%, стоимость - на 25%. При этом запас прочности изделия составляет 178%. Лопасти вертолета, лопатки вентиляторов реактивных двигателей рекомендуют изго¬товлять из поликонденсационных смол, наполненных алюмосиликатными волокнами, что позволяет снизить вес самолета при сохранении прочности и надежности. По английскому патенту № 2047188 покрытие несущих поверхностей самолетов или лопастей роторов вертолетов слоем полиуретана толщиной всего 0,65 мм в 1,5-2 раза повышает их стойкость к дождевой эрозии. Жесткие требования были поставлены перед конструкторами первого англо-французского сверхзвукового пассажирского самолета “Конкорд”. Было рассчитано, что от трения об атмосферу внешняя поверхность самолета будет разогреваться до 120-150° С, и в то же время требовалось, чтобы она не поддавалась эрозии в течение по меньшей мере 20000 часов. Решение проблемы было найдено с помощью поверхностного покрытия защиты самолета тончайшей пленкой фторопласта.

Пластмассовые ракеты
Оболочку двигателя ракет изготавливают из углепластика, наматывая на трубу ленту из углеволокна, предварительно пропитанную эпоксидными смолами. После отверждения смолы и удаления вспомогательного сердечника получают трубу с содержанием углеволокна более двух третей, достаточно прочную на растяжение и изгиб, стойкую к вибрациям и пульсации. Остается начинить заготовку ракетным топливом, приладить к ней отсек для приборов и фотокамер, и можно отправлять ее в полет.
Пластмассовый шлюз
На одном из каналов в районе Быгдощи установлен первый в Польше (а вероятно, и первый в мире) цельнопластмассовый шлюз. Работает шлюз безукоризненно. Пластмассовые элементы рассчитаны на более чем 20-летний срок эксплуатационной службы. Конструкции же из дубовых балок приходилось менять каждые 6 лет.
Сварка без нагрева
Как прикрепить друг к другу две пластмассовые панели? Можно приклеить, но тогда необходимо оборудовать рабочее место системой вентиляции. Можно привинтить или приклепать, но тогда надо загодя сверлить отверстия. Можно приварить, если обе панели термопластичны, но и тут без вентиляции не обойтись, да к тому же из-за локальных перегревов соединение может оказаться продеструктировавшим и непрочным. Самый лучший способ и оборудование для него разработала французская фирма “Брансон”. Генератор ультразвука мощностью 3 кВт, частотой 20 кГц, “звуководы” - сонотроды - и все. Наконечник сонотрода, вибрируя, прони¬кает сквозь верхнюю из скрепляемых деталей толщиной до 8 мм. погружаются в нижнюю и увлекает за собой расплав верхнего полимера. Энергия ультразвуковых ко¬лебаний превращается в тепло лишь локально, получается точечная сварка.


Хочешь личный форум для себя? Стань админом. http://film.topf.ru/viewtopic.php?id=6885
 
AntonДата: Среда, 24.02.2010, 20:14 | Сообщение # 2
Генерал-майор
Группа: Администраторы
Сообщений: 342
Репутация: 0
Статус: Offline
Полимеры

Полимеры – высокомолекулярные соединения, вещества с большой молекулярной массой (от нескольких тысяч до нескольких миллионов), в которых атомы, соединенные химическими связями, образуют линейные или разветвленные цепи, а также пространственные трехмерные структуры. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, целлюлоза, крахмал, каучук и другие органические вещества. Большое число полимеров получают синтетическим путем на основе простейших соединений элементов природного происхождения путем реакций полимеризации, поликонденсации, и химических превращений.

В зависимости от строения основной цепи полимеры делятся на линейные, разветвленные, и пространственные структуры. Линейные и разветвленные цепи можно превратить в трехмерные действием химических агентов, света, и радиации, а также путем вулканизации.

Линейные ВМС могут иметь как кристаллическую, так и аморфную (стеклообразную) структуру. Разветвленные и трехмерные полимеры, как правило, являются аморфными. При нагревании они переходят в высокоэластическое состояние подобно каучуку, резине, и другим эластомерам. При действии особо высоких температур, окислителей, кислот и щелочей, органические и элементоорганические ВМС подвергаются постепенному разложению, образуя газообразные, жидкие, и твердые соединения.

Физико-механические свойства линейных и разветвленных полимеров во многом связаны с межмолекулярным взаимодействием за счет сил побочных валентностей. Так, например, молекулы целлюлозы взаимодействуют между собой по всей длине молекул, и это явление обеспечивает высокую прочность целлюлозных волокон. А разветвленные молекулы крахмала взаимодействуют лишь отдельными участками, поэтому не способны образовывать прочные волокна. Особенно прочные волокна дают многие синтетические полимеры (полиамиды, полиэфиры, полипропилен и др.), линейные молекулы которых расположены вдоль оси растяжения. Трехмерные структуры могут лишь временно деформироваться при растяжении, если они имеют сравнительно редкую сетку (подобно резине), а при наличии густой пространственной сетки они бывают упругими или хрупкими в зависимости от строения.

ВМС делятся на две большие группы: гомоцепные, если цепь состоит из одинаковых атомов (в том числе карбоцепные, состоящие только из углеродных атомов), и гетероцепные, когда цепь включает атомы разных элементов. Внутри этих групп полимеры подразделяются на классы в соответствии с принятыми в химической науке принципами.

Так, если в основную или боковые цепи входят металлы, сера, фосфор, кремний и др., полимеры относятся к элементоорганическим соединениям.

Полимерные материалы делятся на три основные группы: пластические массы, каучуки, волокна химические. Они широко применяются во многих областях человеческой деятельности, удовлетворяя потребности различных отраслей промышленности, сельского хозяйства, медицины, культуры и быта.


Хочешь личный форум для себя? Стань админом. http://film.topf.ru/viewtopic.php?id=6885
 
AntonДата: Среда, 24.02.2010, 20:22 | Сообщение # 3
Генерал-майор
Группа: Администраторы
Сообщений: 342
Репутация: 0
Статус: Offline
ПОЛИМЕРЫ

Успешно соревнуясь с природой, химия создаёт ”вторую природу” - совершенно новые, никогда и нигде не существовавшие вещества с самыми удивительными свойствами, далеко превосходящими всё, что способен дать живой мир.
В создании этой “второй природы” решающая роль принадлежит царице химии - органической химии и её жемчужине - х и м и и п о л и м е р о в, или ,как её иначе называют, химии высокомолекуярных соединений.
В то время как молекулы неорганических веществ состоят из немногих атомов, молекулы органических веществ могут состоять из сотен тысяч атомов.
Молекулы-гиганты! Огромные цепочки-полимеры, образованные из простых и совсем коротеньких звеньев-мономеров. Из таких молекул-цепочек состоят и клетки живой материи - растений и животных.
Попытки химиков разгадать тайны строения гигантских молекул были первым дерзким вызовом природе. Вслед за раскрытием тайн природных высокомолекулярных соединений химии должны были неминуемо придти к созданию новых веществ, которые природа не позаботилась произвести сама. Эти успехи не пришли сами собой. Они венчают более чем столетний период развития органической химии.
Впервые рука учёного поднялась на сокровеннейшую тайну химического строения живой материи в начале прошлого века, когда немецкому химику Ф. Вёлеру первому удалось синтезировать в пробирке органическое вещество-мочевину(NHCONH).
В науке, особенно русской, всегда находились учёные, заглядывавшие на десятилетия, а иногда и на целые века вперёд и не находившие в своих гениальных догадках поддержки официальной науки и властей. Так было и с первооткрывателями синтетических высокомолекулярных веществ.
Великий русский химик А.М.Бутлеров ещё в середине Х1Хв. первым открыл принципы их получения из низко молекулярных соединений (полимеров из мономеров) при помощи реакции полимеризации.
Эти работы оказали огромное влияние на всё дальнейшие развитие химии. В 1909 г. применяя методы Бутлерова, С.В.Лебедев пытался из бутадиена (газообразного продукта получающегося из спирта) создать новые полимерные вещества и получил нечто очень сходное с естественным каучуком. Ему удалось впервые в мире создать искусственный каучук.
В начале ХХ в. произошло и другое событие, резко изменившее отношение химиков к веществам, до этого только загрязнявших лабораторную посуду.
Молодой бельгийский химик Х.Бэкеланд неожиданно заинтересовался вязкой жидкостью, образующейся в результате реакции между двумя давно известными веществами - фенолом и формальдегидом, растворёнными в воде. Нагревая жидкость под давлением, Бэкеланд получил твёрдое, прозрачное вещество, которое имело целый ряд полезных свойств.
Так родился новый материал, названный в честь его создателя “бакелитом”. А вместе с ним появилась и новая область промышленности – индустрия пластиков и пластических масс.
Одно дело разгадать, как устроен природный полимер, а другое – воспроизвести его или похожий на него полимер искусственным путем, т.е. ”сковать” составляющие его звенья в длинную цепочку. Как и при помощи чего можно осуществить такое ”волшебство”?
Химик, собирающийся воспроизвести или создать заново гигантскую молекулу, чем-то напоминает строителя, задумавшего построить новое здание. При этом вместо отдельных кирпичей в распоряжении строителя могут быть крупные блоки различной величины и формы.
У химика, правда, эти блоки невидимы: они невероятно малых размеров.
Самые простые и удобные звенья для создания цепочек - мономеры, имеющие форму веточки из двух и более углеродных атомов с выступающими по бокам атомами водорода, при условии, что внутри молекулы есть двойные или тройные связи. Атомы в молекуле мономера могут располагаться и в виде колец. Тогда двойные связи могут оказаться необязательными. Мономеров существует превеликое множество, и наш “архитектор” - химик может располагать большим числом сортов строительных кирпичей и блоков, чем архитектор-строитель. Простейший из мономеров - газ этилен. Многие другие важные мономеры представляют собой тот же этилен, в котором один из атомов водорода замещен на тот или иной радикал.
Но выбором мономеров планирование ”архитектуры” будущих молекул-гигантов не ограничивается. Молекулы этилена, в каком бы порядке их ни соединяли друг с другом, дают полимер, отличающийся от мономера только своей длиной. Такая структура, вообще говоря, особо благоприятна для получения волокнистых веществ.
Картина значительно усложняется, когда на место одиночного водородного атома сбоку цепочки присоединена целая группа атомов, как, например, у пропилена. Цепочка полимера, ”собранного” из таких мономеров, может принять уже три различных вида: мономеры соединены как попало, и их боковые группы ”смотрят” в любые стороны; боковые группы расположены все по одну сторону цепочки полимера(такие полимеры называются и з о т а к т и ч е с к и м и); боковые группы располагаются по
обеим сторонам цепочки, но в каком-то определённом порядке.
Теперь не трудно представить себе, какое огромное количество вариантов можно составить, имея в своем распоряжении столь богатые возможности комбинировать расположение мономеров в цепочке полимера!
Цепочки, у которых все боковые группы мономеров направлены в одну сторону (“изо”), легко размещаются параллельно друг другу и образуют частично кристаллическую структуру. А цепочки с беспорядочным размещением боковых групп более характерны для аморфных (стекловидных) структур вещества. Блоки различных полимеров ,в свою очередь, тоже могут соединяться друг с другом в цепочку, наподобие мономеров. Наконец, в качестве боковых отростков на месте групп атомов мономеров могут оказаться целые полимеры.
И каждое такое изменение в структуре полимера означает какое-то определённое изменение в механических или иных его свойствах.
Молекулы мономеров сами по себе никак не соединяются. Ведь у них нет ни рук, ни крючков, ни магнитиков, ни электрических зарядов, с помощью которых они могли бы самопроизвольно соединяться друг с другом.
Значит, их надо заставить соединяться, ”ввернуть” в концы молекул по “крючку”. Для этого существует два основных способа: поликонденсация и полимеризация. Оба они требуют обычно нагревания, причём часто приходится применять высокие давления и катализаторы-инициаторы.
В результате такого объединённого энергетического воздействия мономеры или группы мономеров претерпевают перестройку. Атомы их, расположенные на концах молекул исходных веществ, приобретают ”крючки”, т.е. приобретают способность связываться, сцепляться друг с другом.
Процесс поликонденсации в виде сложной химической реакции с выделением в качестве своеобразных “отходов” некоторых низкомолекулярных веществ - обычно воды, аммиака и т.п. Именно этим поликонденсация отличается от полимеризации, при которой исходный продукт превращается в конечный целиком, без всяких ”отходов”.
«Сцепление» при поликонденсации происходит за счёт отщепления подвижных атомов или групп атомов входящих в молекулу функциональных групп. К числу таких групп в органических молекулах относятся аминогруппа(NH), от которой может отщепляться атом водорода, и карбоксильная группа(СООН), от которой сравнительно легко отрывается гидроксильная группа ОН. Это происходит, когда молекула с карбоксильной группой встречается с молекулой, наделённой аминогруппой, так как атом водорода, отрывающийся от аминогруппы, в этом случае получает возможность соединиться с гидроксильной группой в прочную молекулу воды. При этом у первой молекулы освобождается связь при атоме углерода, а у второй – при атоме азота. Через эти связи молекулы и смыкаются друг с другом.
Если в каждой молекуле имеется лишь по одной функциональной группе, этим всё и кончается. Такой тип химической реакции мы называем конденсацией. Если же в молекулах содержится не менее по две функциональные группы, появляется возможность присоединения к получившейся “двойной” молекуле новых и новых звеньев за счёт ввода в действие новых и новых функциональных групп, иначе говоря, возможность безграничного роста молекулы.
Метод поликонденсации позволяет получать такие очень важные вещества, как фенольно фармандегидые, карбамидные и меламинформальдегидные смолы. Они применяются в качестве клеев и связывающих веществ при производстве фанеры, электроизоляционных изделий, пенопласта, материалов, в которые входят древесные опилки, и т.д.
Реакция двухосновных кислот с диаминами-R(NH ) или гликолями-R(OH) даёт очень важные исходные полимеры - полиамиды и полиэфиры. Из этих полимеров после дальнейшей переработки изготовляют очень прочные волокна: анид, нейлон и лавсан.
Процесс полимеризации позволяет получать гигантские молекулы практически любой длины-цепочки в сотни тысяч и даже миллионы составных звеньев. По сравнению с поликонденсацией этот процесс более прост, но зато труднее поддаётся управлению. Если в поликонденсации участвуют молекулы, на концах которых уже заранее есть “крючки”, с помощью которых они соединяются в цепочки полимеров, то в процессе полимеризации ”крючки” создаются в тот момент, когда каждый мономер становится на своё место в цепочке.
Достигается это разными путями, однако все они требуют присутствие инициатора. В отличие от обычного процесса катализа при полимеризации инициатор расходуется.
В качестве инициатора применяют - свободные радикалы - осколки более крупных молекул, разрушенных в результате нагревания.
Такой свободный радикал, имея на орбите одного из составляющих его атомов лишний электрон, химически очень активен и способен прочно с некоторыми мономерами. У концевого атома мономеров благодаря ему появляется свой свободный электрон, они сами становятся свободными радикалами и в свою очередь присоединяют следующие мономеры.
Мономеры один за другим нанизываются в цепочку полимера, а свободный (непарный) электрон, присоединив к цепочке очередной мономер, как бы переходит на его конец, чтобы присоединить следующий, и т.д.
Таким путём создаются полиэтилен, полистирол,пол и хлорвинил. Их гигантские молекулы могут быть линейными, могут иметь боковые ответвления. Последние происходит в том случае, когда свободный радикал начинает присоединяться не к концу длинной цепочки полимера, а где-то сбоку. Это бывает, если процесс полимеризации ведётся при высокой температуре. Такое строение, например, приобретает, полиэтилен, когда он полимеризуется при давлении в100Дж и температуре 200-300.


Хочешь личный форум для себя? Стань админом. http://film.topf.ru/viewtopic.php?id=6885
 
Форум » В помощь учащимся » Химия » Полимер (Подробный школьный реферат.)
  • Страница 1 из 1
  • 1
Поиск:


Besucherzahler ukrainewoman.ca
счетчик посещений
Goon Каталог сайтов