Понедельник, 29.04.2024, 01:03
Интересный сайт Antona
Приветствую Вас Гость | RSS
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Форум » В помощь учащимся » Астрономия » Происхождение Солнечной системы (Реферат по астрономии)
Происхождение Солнечной системы
AntonДата: Суббота, 27.02.2010, 21:52 | Сообщение # 1
Генерал-майор
Группа: Администраторы
Сообщений: 342
Репутация: 0
Статус: Offline
Реферат по астрономии

“Происхождение Солнечной системы“

Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий.

И все же мы до сих пор довольно далеки от решения этой проблемы. Но за последние три десятилетия прояснился вопрос о путях эволюции звезд. И хотя детали рождения звезды из газово-пылевой туманности еще далеко не ясны, мы теперь четко представляем, что с ней происходит на протяжении миллиардов лет дальнейшей эволюции.

Переходя к изложению различных космогонических гипотез, сменявших одна другую на протяжении двух последних столетий, начнем с гипотезы великого немецкого философа Канта и теории, которую спустя несколько десятилетий независимо предложил французский математик Лаплас. Предпосылки к созданию этих теорий выдержали испытание временем.

Точки зрения Канта и Лапласа в ряде важных вопросов резко отличались. Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сперва возникло центральное массивное тело - будущее Солнце, а потом планеты, в то время как Лаплас считал первоначальную туманность газовой и очень горячей с высокой скоростью вращения. Сжимаясь под действием силы всемирного тяготения, туманность, вследствие закона сохранения момента количества движения, вращалась все быстрее и быстрее. Из-за больших центробежных сил от него последовательно отделялись кольца. Потом они конденсировались, образуя планеты.

Таким образом, согласно гипотезе Лапласа, планеты образовались раньше Солнца. Однако, несмотря на различия, общей важной особенностью является представление, что Солнечная система возникла в результате закономерного развития туманности. Поэтому и принято называть эту концепцию “гипотезой Канта-Лапласа”.

Однако эта теория сталкивается с трудностью. Наша Солнечная система, состоящая из девяти планет разных размеров и масс, обладает особенностью: необычное распределение момента количества движения между центральным телом - Солнцем и планетами.

Момент количества движения есть одна из важнейших характеристик всякой изолированной от внешнего мира механической системы. Именно как такую систему можно рассмотреть Солнце и окружающие его планеты. Момент количества движения можно определить как “запас вращения” системы. Это вращение складывается из орбитального движения планет и вращения вокруг осей Солнца и планет.

Львиная доля момента количества движения Солнечной системы сосредоточена в орбитальном движении планет-гигантов Юпитера и Сатурна.

С точки зрения гипотезы Лапласа, это совершенно непонятно. В эпоху, когда от первоначальной, быстро вращающейся туманности отделилось кольцо, слои туманности, из которых потом сконденсировалось Солнце, имели (на единицу массы) примерно такой же момент, как вещество отделившегося кольца (так как угловые скорости кольца и оставшихся частей были примерно одинаковы), так как масса последнего была значительно меньше основной туманности (“протосолнца”), то полный момент количества движения кольца должен быть много меньше, чем у “протосолнца”. В гипотезе Лапласа отсутствует какой-либо механизм передачи момента от “протосолнца” к кольцу. Поэтому в течение всей дальнейшей эволюции момент количества движения “протосолнца”, а затем и Солнца должен быть много больше, чем у колец и образовавшихся из них планет. Но этот вывод противоречит с фактическим распределением количества движения между Солнцем и планетами.

Для гипотезы Лапласа эта трудность оказалась непреодолимой.

Остановимся на гипотезе Джинса, получившей распространение в первой трети текущего столетия. Она полностью противоположна гипотезе Канта-Лапласа. Если последняя рисует образование планетарных систем как единственный закономерный процесс эволюции от простого к сложному, то в гипотезе Джинса образование таких систем есть дело случая.

Исходная материя, из которой потом образовались планеты, была выброшена из Солнца (которое к тому времени было уже достаточно “старым” и похожим на нынешнее) при случайном прохождении вблизи него некоторой звезды. Это прохождение был настолько близким, что его можно рассматривать практически как столкновение. Благодаря приливным силам со стороны налетевшей на Солнце звезды, из поверхностных слоев Солнца выброшена струя газа. Эта струя останется в сфере притяжения Солнца и после того, как звезда уйдет от Солнца. Потом струя сконденсируется и даст начало планетам.

Если бы гипотеза Джинса была правильной, число планетарных систем, образовавшихся за десять миллиардов лет ее эволюции, можно было пересчитать по пальцам. Но планетарных систем фактически много, следовательно, эта гипотеза несостоятельна. И ниоткуда не следует, что выброшенная из Солнца струя горячего газа может сконденсироваться в планеты. Таким образом, космологическая гипотеза Джинса оказалась несостоятельной.

Выдающийся советский ученый О.Ю.Шмидт в 1944 году предложил свою теорию происхождения Солнечной системы: наша планета образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти “современный” вид. При этом никаких трудностей с вращением момента планет не возникало, так как первоначально момент вещества облака может быть сколь угодно большим. Начиная с 1961 года эту гипотезу развивал английский космогонист Литтлтон, который внес в нее существенные улучшения. По обеим гипотезам “почти современное” Солнце сталкивается с более или менее “рыхлым” космическим объектом, захватывая части его вещества. Тем самым образование планет связывается с процессом звездообразования.


Хочешь личный форум для себя? Стань админом. http://film.topf.ru/viewtopic.php?id=6885
 
AntonДата: Четверг, 08.04.2010, 23:02 | Сообщение # 2
Генерал-майор
Группа: Администраторы
Сообщений: 342
Репутация: 0
Статус: Offline
РЕФЕРАТ
ПО АСТРОНОМИИ

Тема: ВОЗНИКНОВЕНИЕ ПЛАНЕТНЫХ СИСТЕМ И ЗЕМЛИ

Ничто во всей Вселенной
Не существует, только их полет,
И он мои печали прочь несет
Полет планет, Земли, и звезд
Полет, и камня,
И мысль моя не жизни и смерти
На двух крыльях, на двух волнах
Плывет.

Поль Элюар


ВВЕДЕНИЕ
Согласитесь, сегодня человек, в какой бы самой отдаленной области науки или на-родного хозяйства он ни работал, должен иметь представления, хотя бы общее, о нашей Солнечной системе, звездах и современных достижениях астрономии.
Сравнительное изучение планет и их спутников – «лун» - имеет первостепенное значение и для познания Земли. Нам еще не ясны те условия, которые привели к форми-рованию разнообразных природных комплексов, в том числе благоприятствовавших за-рождению и развитию жизни на Земле.
В этом реферате пойдет речь о Солнечной системе и о происхождении планет.
Я выбрал эту тему потому, что загадочный мир образования звезд и планет с дав-них времен притягивал к себе внимание людей. Эта тема была актуальна на протяжении тысячелетий и лишь в последние 10 лет были получены достоверные сведения о наличии планет и планетных систем и у других звезд. Познание планет и планетных систем приве-дет человечество и к решению другой глобальной проблемы – существование жизни на планетах, а это предстоит решить человечеству только в третьем тысячелетии.
Таким образом, цель данной работы – рассмотреть возникновение планет, отдельно рассмотреть возникновение, строение, форму, размеры и движение Земли.

1. ОБРАЗОВАНИЕ СОЛНЕЧНОЙ СИСТЕМЫ
Наша Галактика содержит около 100 млрд. звезд, а всего галактик, которые в прин-ципе наблюдаемы, примерно 10 млрд. Почему же тогда надо тратить время на выяснение подробностей рождения Солнца? Оно представляет собой посредственную, ничем не примечательную звезду, появившуюся около 4,6 млрд. лет назад (можно даже назвать его возраст средним), Солнце старше. Плеяд, возраст которых несколько десятков миллионов лет, но заведомо моложе красных гигантов, населяющих шаровые скопления (их возраст 14 млрд. лет).
Дело в том, что Солнце до сих пор остается единственной известной науке звездой, на одной из планет которой существует жизнь. Поэтому чрезвычайно интересно исследо-вать механизм возникновения Солнечной системы. Может оказаться, что планеты образуются, как правило, при рождении какой-нибудь звезды. В этом случае заметно увели-чилась бы вероятность обнаружить жизнь еще где-нибудь во Вселен¬ной. Такая возмож-ность представляет большой интерес, причем не только с научной точки зрения.
1.1. Теории прошлого
Первая теория образования Солнечной системы, предложенная в 1644 г. Декартом, имеет заметное сходство с теорией, признанной в настоящее время. По представлениям Декарта, Солнечная система образовалась из первичной туманности, имевшей форму дис-ка и состоявшей из газа и пыли (монистическая теория). В 1745 г. Бюффон предложил дуалистическую теорию; согласно его версии вещество, из которого образованы планеты было отторгнуто от Солнца какой-то слишком близко проходившей планетой или другой звездой.
Наиболее известными монистическими теориями стали теории Лапласа и Канта. Трудности, с которыми встретились в конце 19 в. Монистические теории, способствовали успеху дуалистических, однако развитие истории снова вернуло нас к монистической теории. Такие колебания вполне понятны, поскольку в распоряжении исследователей было очень уж мало данных: распределение расстояний до планет, подчиненное определенному закону (закону Боде), знание того, что планеты движутся вокруг Солнца в одну сторону, да ее некоторые теоретические соображения (на которых мы не будем останавливаться), касающиеся углового момента Солнечной системы.
Если бы Бюффон оказался прав, то появление такой планеты, как наша, было .бы событием чрезвычайно редким, связанным с другим столь же редким событием, как сближение двух звезд, а вероятно найти жизнь где-нибудь во Вселенной стала бы ничтож-но малой. Такая вызвала бы разочарование не только у читателей научной фантастики.
1.2. Рождение Солнца
Более многочисленны и надежны экспериментальные данные о Солнечной системе, полученные в послевоенные годы. Методы которыми были исследованы метеориты и поверхность Луны, нельзя было даже представить во времена Лапалса.
Речь идет о веществе, которое образовалось на самой ранней стадии жизни Сол-нечной системы или даже было частью первичной туманности.
Исследования послевоенных лет привели к некоторому прояснению нашего проис-хождения. Речь идет о «большом взрыве», в результате которого в далекую эпоху, при-мерно 15-20 млрд. лет назад, родилась Вселенная. Спустя миллиард лет после «большого взрыва» из смеси водорода и гелия, заполнявших все пространство, началось образование галактик. Первые звезды, образовавшиеся те временя, все еще видны в шаровых скопле-ниях и в центрах галактик. Вслед за ними образовались спиральные рукава.
Наиболее массивные звезды, сформировавшиеся в самом начале, прошли очень быструю эволюцию, при которой водород превращался в более тяжелые элементы (в том числе углерод и кислород), а вновь образованное вещество выбрасывалось в окружающее пространство. Такие превращения и сейчас происходят в термоядерных реакциях, постав-ляющих всю энергию, излучаемую звездами.
Этот «пепел» в свою очередь подвергался локаль¬ному сжатию, приводящему к рождению новых звезд, и цикл повторялся. Солнце представляет собой звезду второго или третьего поколения. Согласно Клейтону, сжатие, в результате которого образова-лось Солнце, было вызвано которая, взрываясь, сообщила движению межзвездному ве-ществу и, как метла, толкала его впереди себя; так про¬исходило до тех пор пока за счет силы тяготения не сформировалось стабильное облако, продолжавшее сжиматься, превращая собственную энергию сжатия в тепло
Вся эта масса начала нагреваться, и за очень ко¬роткое время (десяток миллионов лет) температура внутри облака достигла 10—15 млн. градусов. К. этому времени термо-ядерные реакции шли полным ходом и процесс сжатия закончился. Принято считать, что именно в этот «момент», от четырех до шести миллиардов лет назад, и родилось Солнце.


2. ПРОИСХОЖДЕНИЕ ПЛАНЕТ
Предполагается, что планеты возникли одновременно (или почти одновременно) 4,6 млрд. лет назад из газово-пылевой туманности, имевшей форму диска, в центре кото-рого располагалось молодое Солнце. Образование звезд и планетных систем — это, по-видимому, все-таки единый процесс, происходящий в результате конденсации облака межзвездного газа в силу его гравитационной неустойчивости.
Таким образом, протопланетная туманность образовалась вместе с Солнцем из межзвездного вещества, плотность которого превысила критические пределы. По некото-рым данным (присутствие специфических изотопов в метеоритах), такое уплотнение про-изошло в результате относительно близкого взрыва сверхновой звезды. Взрыв сверхновой мог ускорить и стимулировать процесс конденсации, а также обеспечить содержание в составе газовой туманности тяжелых элементов. Допланетное облако было мало массив-ным. Если бы его масса превышала 0,15 массы Солнца, оно аккумулировалось бы не в систему планет, а в звездообразный спутник Солнца.
Протопланетное облако было неустойчивым, оно становилось все более плоским, конденсировалось в уплотненный диск, в нем возникали неустойчивости, которые приво-дили к образованию ряда колец, а газовые кольца превращались в газовые сгустки — про-топланеты. Протопланеты сжимались, твердые пылинки сближались, сталкивались, обра-зовывали тела все больших размеров. В относительно короткий срок (10n лет, где, по раз-ным оценкам, n = 5—8) сформировались девять больших планет.
В настоящее время господствует идея холодного, а не горячего, начального состоя-ния Земли и других планет Солнечной системы, которые возникли в результате аккреции частиц и твердых тел газово-пылевого протопланетного облака, окружавшего Солнце. Однако пока не решен вопрос, была ли Земля гомогенна или гетерогенна к концу своего формирования, образовались ли ядро, мантия и кора в результате гетерогенной аккреции или же наша планета создавалась из гомогенного материала, который затем подвергался дифференциации в процессе последующей геологической истории. Большинство исследо-вателей придерживаются модели гетерогенной аккреции. (Хотя вопрос о разделе вещества допланетного облака на железные и силикатные частицы пока окончательно не решен.)
Астероиды, кометы, метеориты являются, вероятно, остатками материала, из кото-рого сформировались планеты. Астероиды сохранились до нашего времени благодаря то-му, что подавляющее большинство их движется в широком промежутке между орбитами Марса и Юпитера. Аналогичные каменистые тела, некогда существовавшие во всей зоне планет земной группы, давно либо присоединились к этим планетам, либо разрушились при взаимных столкновениях, либо были выброшены на пределы этой зоны вследствие гравитационного воздействия планет.
Происхождение систем регулярных спутников (т.е. движущихся в направлении вращения планеты по почти круговым орбитам, лежащим в плоскости ее экватора) авторы космогонических гипотез обычно объясняют повторением в малом масштабе того же про-цесса, который они предлагают для объяснения образования планет Солнечной системы. Такие спутники есть у Юпитера, Сатурна, Урана. Происхождение иррегулярных спутни-ков (т.е. таких, которые обладают обратным движением) эти теории объясняют захватом.
Что касается Луны, то наиболее вероятным является ее образование на околозем-ной орбите (возможно, из нескольких крупных спутников, которые в конечном счете объ-единились в одно тело — Луну, что обеспечило ее быстрое нагревание), хотя продолжают обсуждаться и маловероятные гипотезы захвата Землей готовой Луны и отделения Луны от Земли.

3. ОТКРЫТИЕ ДРУГИХ ПЛАНЕТНЫХ СИСТЕМ
Проблема особенностей химического состава Солнечной системы. Хотя идея мно-жественности планетных систем прочно утвердилась в астрономической картине мира еще со времен Дж. Бруно, однако до самого последнего времени эмпирически обоснован-ными данными о существовании планетных систем у других звезд астрономия не облада-ла. Возможности наблюдательной техники не позволяли этом убедиться. Только новей-шие методы астрономического наблюдения окончательно закрыли эту «страницу» астро-номического познания.
Вступление астрономии в XXI в. ознаменовалось выдающимся достижением — от-крытием планет за пределами Солнечной системы, планетных систем у других звезд. С помощью нового поколения средств и методов астрономического наблюдения начиная с 1995 г. удалось открыть уже свыше сотни планет за пределами Солнечной системы, у звезд, расположенных в радиусе примерно ста световых лет от нас.
Кроме того, согласно последним наблюдательным данным, по крайней мере каждая третья звезда имеет свою планетную систему. Эти данные лодтверждены наблюдениями в инфракрасном диапазоне молодых звезд. Это значит, что планетогенез (образ вание пла-нетных систем) — не исключительное явление, а повсеместный момент эволюции мате-рии. А наша планетная система - закономерное звено организации галактической и звезд-ной материи, одна из многих подобных систем нашей Галактики. Но у нее есть и свои важные отличительные черты.
Как оказалось, подавляющее большинство открытых планет относятся к планетам типа Юпитера, т.е. состоят преимущественно из водорода и гелия. Их называют горячими Юпитерами. Похоже, что планет земного типа в других системах намного меньше, чем планет типа Юпитера. По-видимому, наша Солнечная система не относится к планетным системам со среднестатистическим распределением химических элементов во Вселенной и сложилась в особых условиях. Ее образование имело свои особенности, связанные с обогащением водородно-гелиевого пылевого диска тяжелыми элементами. Таким обра-зом, открытие других планетных систем вновь привлекло внимание к проблемам проис-хождения (нуклеосинтеза) и распространения химических элементов во Вселенной, осо-бенностям химического состава Солнечной системы. Вкратце, суть проблемы в следую-щем.
При спектроскопическом исследовании астрономических объектов во всей доступ-ной нам Вселенной обнаруживаются одни и те же химические элементы. Однако относи-тельная распространенность элементов, присущих Земле, не характерна для других частей Вселенной. Так, около 80% всех атомов во Вселенной — атомы водорода; остальные — главным образом атомы гелия . Более тяжелые атомы, которые обычны для нашей плане-ты (железо, магний, кремний, кислород и др.), составляют во Вселенной лишь ничтожно малую часть. Ясно, что Земля сформировалась в особенных условиях, не характерных для среднестатистического распространения элементов во Вселенной, и что вначале во Все-ленной не было сложных атомов, но впоследствии образовался какой-то способ синтеза сложных элементов из легких и простых. Когда и как образовалась такая «фабрика» хи-мических элементов, как она связана с возникновением Солнечной системы — одна из центральных проблем современного естествознания, лежащая на стыке астрономии, хи-мии и физики. На эти вопросы дает ответ теория строения и эволюции звезд.


4. ПЛАНЕТЫ И ИХ СПУТНИКИ.
Земля — спутник Солнца в мировом пространстве, вечно кружащийся вокруг этого источника тепла и света. Самыми яркими из постоянно наблюдаемых нами небесных объ-ектов, кроме Солнца и Луны, являются соседние с нами планеты. Они принадлежат к чис-лу тех девяти миров (включая Землю), которые обращаются вокруг Солнца (а его радиус 700 тыс. км, т.е. в 100 раз больше радиуса Земли) на расстояниях, достигающих несколь-ких миллиардов километров. Группа планет вместе с Солнцем составляет Солнечную сис-тему. Планеты хотя и кажутся похожими на звезды, в действительности гораздо меньше последних и темнее. Они видны только потому, что отражают солнечный свет, который кажется очень яркими, поскольку планеты гораздо ближе к Земле, чем звезды.
Кроме планет, в солнечную «семью» входят спутники планет (в том числе и наш спутник — Луна), астероиды, кометы, метеорные тела. Планеты расположены в следую-щем порядке: Меркурий, Венера, Земля (один спутник — Луна), Марс (два спутника), Юпитер (15 спутников), Сатурн (16 спутников), Уран (5 спутников), Нептун (2 спутника) и Плутон (1 спутник). Земля в 40 раз ближе к Солнцу, чем Плутон, и в 2,5 раза дальше, чем Меркурий. Возможно, что за Плутоном есть еще одна или несколько планет, но поис-ки их среди множества звезд слабее 15-й величины слишком кропотливы и не оправдыва-ют затраченного времени. Возможно, они будут открыты «на кончике пера», как это уже было с Ураном, Нептуном и Плутоном.
Важную роль в Солнечной системе играет межпланетная среда, те формы вещества и поля, которые заполняют пространство Солнечной системы. Основные компоненты этой среды — солнечный ветер (поток заряженных частиц, в основном протонов и электронов, истекающих с поверхности Солнца); заряженные частицы высокой энергии, приходящие из глубин космоса; межпланетное магнитное поле; межпланетная пыль (большая часть с массой 10-3—10-5 г), основным источником которой являются кометы; нейтральный газ (атомы водорода и гелия).
С 1962 г. планеты и их спутники успешно исследуются космическими аппаратами. Изучены атмосферы и поверхность Венеры и Марса, сфотографированы поверхность Меркурия, облачный покров Венеры, Юлитера, Сатурна, вся поверхность Луны, получены изображения спутников Марса, Юпитера, Сатурна, колец Сатурна и Юпитера. Спускае-мые космические аппараты исследовали физические и химические свойства пород, сла-гающих поверхность Марса, Венеры, Луны (образцы лунных пород были доставлены на Землю и тщательно изучены). С конца 1970-х гг. космическими станциями («Вояджер», «Галилео» и др.) исследовались планеты-гиганты и их спутники. Полученная информация значительно обогатила наши представления о строении и происхождении Солнечной сис-темы.
По физическим характеристикам планеты делятся на две группы: планеты земного типа (Меркурий, Венера, Земля, Марс) и планеты-гиганты (Юпитер, Сатурн, Уран, Неп-тун). О Плутоне известно мало, но, по-видимому, он ближе по своему строению к плане-там земной группы.


5. СТРОЕНИЕ ПЛАНЕТ.
Строение планет слоистое. Выделяют несколько сферических оболочек, разли-чающихся по химическому составу, фазовому состоянию, плотности и другим характери-стикам.
Все планеты земной группы имеют твердые оболочки, в которых сосредоточена почти вся их масса. Венера, Земля и Марс обладают газовыми атмосферами. Меркурий практически лишен атмосферы. Окутан плотной атмосферой крупнейший спутник Сатур-на — Титан, который по размерам больше планеты Меркурий. Титан — единственный спутник в нашей Солнечной системе, обладающий постоянной и плотной газовой атмо-сферой, которая состоит главным образом из азота и метана. Запущенная в 1997 г. к Са-турну автоматическая космическая станция «Кассини», уже передавшая изображения Са-турна, в 2004 г. должна сблизиться с Титаном, спустить на его поверхность, «притита-нить» на парашюте космический зонд «Гюйгенс», который будет передавать информацию о состоянии атмосферы и поверхности Титана (ее температура — 180°С).
Земля имеет жидкую оболочку из воды — гидросферу, а также биосферу (резуль-тат прошлой и современной деятельности живых организмов). Аналогом земной гидро-сферы на Марсе является криосфера — лед в полярных шапках и в грунте (вечная мерзло-та). Одна из загадок Солнечной системы — дефицит воды на Венере.
Характеристики твердых оболочек планет относительно хорошо известны лишь для Земли. Модели внутреннего строения других планет земной группы строятся главным образом на основании данных о свойствах вещества земных недр. Как и у Земли, в твер-дых оболочках планет выделяют: кору — самую внешнюю тонкую (10—100 км) твердую оболочку; мантию — твердую и толстую (1000—3000 км) оболочку; ядро — наиболее плотную часть планетных недр.
Ядро Земли, состоящее, скорее всего, из железа, подразделяется на внешнее (жид-кое) и внутреннее (твердое); температура в центре Земли оценивается в 4000—5000 К. Жидкое ядро, вероятно, есть также у Меркурия и Венеры; у Марса его, по-видимому, нет.
Наиболее распространены в твердом «теле» Земли железо (34,6%), кислород (29,5%), кремний (15,2%) и магний (12,7%).
Таким образом, планеты земной группы резко отличаются по элементному составу от Солнца и совершенно не соответствуют средней космической распространенности эле-ментов — очень мало водорода, инертных газов, включая гелий.
Планеты-гиганты обладают иным химическим составом. Юпитер и Сатурн содер-жат водород и гелий в той же пропорции, что и Солнце. Вероятно, другие элементы также содержатся в пропорциях, соответствующих солнечному составу. В недрах Урана и Неп-туна, по-видимому, больше тяжелых элементов.
Недра Юпитера находятся в жидком состоянии, за исключением небольшого ядра, которое представляет собой результат металлизации жидкого водорода. Температура в центре Юпитера около 30 000 К. Химический и изотопный состав Юпитера отражает, по-видимому, состав межзвездной среды, какой она была 5 млрд лет назад. Вместе с тем Юпитер никогда не был настолько горяч, чтобы в нем могли протекать термоядерные ре-акции. Сатурн по внутреннему строению похож на Юпитер. Строение недр Урана и Неп-туна иное: доля каменистых материалов в них существенно больше.
Основными источниками энергии в недрах планет являются радиоактивный распад элементов и выделение гравитационной потенциальной энергии при аккреции (объедине-нии) и дифференциации вещества, его постепенном перераспределении по глубине в со-ответствии с плотностью — тяжелые фрагменты тонут, легкие всплывают. На Земле по-добное перераспределение еще далеко не завершилось. Такие процессы вызывают пере-мещения отдельных участков земной коры, деформацию, горообразование, тектонические и вулканические процессы.
Причина вулканических процессов в следующем. В верхней мантии существуют небольшие области, где температура достаточна для плавления ее вещества. Расплавлен-ное вещество (магма), выдавливающееся вверх, прорывается через кору, и происходит вулканическое извержение. Судя по характеру поверхности, среди планет земной группы тектонически наиболее активна Земля, за ней следуют Венера и Марс. При этом важно, что выделяемая Землей тепловая энергия никогда не приводила ее в полностью расплав-ленное состояние.
Высокой тектонической и вулканической активностью отличаются и спутники дальних планет Солнечной системы, особенно Юпитера и Сатурна. Недавно было зафик-сировано самое крупное извержение вулкана в Солнечной системе на спутнике Юпитера, который называется Ио. Площадь этого извержения — около 2000 км2, а его мощность превышает извержения земных вулканов в 5—6 тысяч раз! Ио — самое сейсмическое не-бесное тело во всей Солнечной системе.
Поверхность планет и их спутников формируют, кроме эндогенных (тектониче-ских, вулканических) процессов, и экзогенные — падение метеорных тел, астероидов, ко-торое приводит к образованию кратеров, эрозия (под действием ветра, осадков, воды, лед-ников), химическое взаимодействие поверхности с атмосферой и гидросферой и др. Эндо-генные и экзогенные процессы определяют рельеф поверхности планет.


6. ПЛАНЕТА ЗЕМЛЯ
6.1. Форма, размеры и движение Земли
По форме Земля близка к эллипсоиду, сплюснутому у полюсов и растянутому в эк-ваториальной зоне. Средний радиус Земли 6371,032 км, полярный —6356,777 км, эквато-риальный —6378,160 км. Масса Земли 5,976•1024 кг, средняя плотность 5518 кг/м3.
Земля движется вокруг Солнца со средней скоростью 29,765 км/с по эллиптиче-ской, близкой к круговой орбите (эксцентриситет 0,0167); среднее расстояние от Солнца 149,6 млн. км, период одного обращения по орбите 365, 24 солнечных суток. Вращение Земли вокруг собственной оси происходит со средней угловой скоростью 7,292115•10-5рад/с, что примерно соответствует периоду в 23 ч 56 мин 4,1 с. Линейная скорость по-верхности Земли на экваторе — около 465 м/с. Ось вращения наклонена к плоскости эк-липтики под углом 66° 33' 22''. Этот наклон и годовое обращение Земли вокруг Солнца обуславливают исключительно важную для климата Земли смену времен года, а собст-венное ее вращение — смену дня и ночи. Вращение Земли из-за приливных воздействий неуклонно (хотя и очень медленно — на 0,0015 с за столетие) замедляется. Имеются и не-большие нерегулярные вариации продолжительности суток.
Положение географических полюсов меняется с периодом 434 суток с амплитудой 0,36''. Кроме того, имеются и небольшие сезонные их перемещения.
Площадь поверхности Земли 510,2 млн. км2, из которых примерно 70,8% прихо-дится на Мировой океан. Его средняя глубина около 3,8 км, максимальная (Марианская впадина в Тихом океане) равна 11,022 км; объем воды 1370 млн. км3, средняя соленость 35 г/л. Суша составляет соответственно 29,2% и образует шесть материков и острова. Она поднимается над уровнем моря в среднем на 875 м; наибольшая высота (вершина Джомо-лунгма в Гималаях) 8848 м. Горы занимают свыше 1/3 поверхности суши. Пустыни по-крывают около 20% поверхности суши, саванны и редколесья —около 20%, леса —около 30%, ледники —свыше 10%. Свыше 10% суши занято под сельскохозяйственными угодь-ями.
По современным космогоническим представлениям Земля образовалась примерно 4,6-4,7 млрд. лет назад из захваченного притяжением Солнца протопланетного облака. На образование первых, наиболее древних из изученных горных пород потребовалось 100-200 млн. лет. Примерно 3,5 млрд. лет назад возникли условия, благоприятные для возник-новения жизни. Homo sapiens («Человек разумный») как вид появился примерно полмил-лиона лет назад, а формирование современного типа человека относят ко времени отступ-ления первого ледника, то есть около 40 тыс. лет назад.
У Земли имеется единственный спутник — Луна. Ее орбита близка к окружности с радиусом около 384400 км.
6.2. Внутреннее строение

Рис. 1. Внутреннее строение Земли

Основную роль в исследовании внутреннего строения Земли играют сейсмические методы, основанные на исследовании распространения в ее толще упругих волн (как про-дольных, так и поперечных), возникающих при сейсмических событиях —при естествен-ных землетрясениях и в результате взрывов. На основании этих исследований Землю ус-ловно разделяют на три области: кору, мантию и ядро (в центре). Внешний слой —кора —имеет среднюю толщину порядка 35 км. Основные типы земной коры —континентальный (материковый) и океанический; в переходной зоне от материка к океану развита кора про-межуточного типа. Толщина коры меняется в довольно широких пределах: океаническая кора (с учетом слоя воды) имеет толщину порядка 10 км, тогда как толщина материковой коры в десятки раз больше.

Рис. 2. Схематическое строение Земли

Поверхностные отложения занимают слой толщиной около 2 км. Под ними нахо-дится гранитный слой (на континентах его толщина 20 км), а ниже — примерно 14-километровый (и на континентах, и в океанах) базальтовый слой (нижняя кора). Средние плотности составляют: 2,6 г/см3 — у поверхности Земли, 2,67 г/см3 — у гранита, 2,85 г/см3 — у базальта.
На глубину примерно от 35 до 2885 км простирается мантия Земли, которую назы-вают также силикатной оболочкой. Она отделяется от коры резкой границей (так назы-ваемая граница Мохоровича, или «Мохо»), глубже которой скорости как продольных, так и поперечных упругих сейсмических волн, а также механическая плотность скачкообраз-но возрастают. Плотности в мантии увеличиваются по мере возрастания глубины пример-но от 3,3 до 9,7 г/см3.
В коре и (частично) в мантии располагаются обширные литосферные плиты. Их ве-ковые перемещения не только определяют дрейф континентов, заметно влияющий на об-лик Земли, но имеют отношение и к расположению сейсмических зон на планете.
Еще одна обнаруженная сейсмическими методами граница (граница Гутенберга) — между мантией и внешним ядром — располагается на глубине 2775 км. На ней скорость продольных волн падает от 13,6 км/с (в мантии) до 8,1 км/с (в ядре), а скорость попереч-ных волн уменьшается от 7,3 км/с до нуля. Последнее означает, что внешнее ядро являет-ся жидким. По современным представлениям внешнее ядро состоит из серы (12%) и желе-за (88%). Наконец, на глубинах свыше 5120 км сейсмические методы обнаруживают на-личие твердого внутреннего ядра, на долю которого приходится 1,7% массы Земли. Пред-положительно, это железо-никелевый сплав (80% Fe, 20% Ni).
В числе многих химических элементов, входящих в состав Земли, имеются и ра-диоактивные. Их распад, а также гравитационная дифференциация (перемещение более плотных веществ в центральные, а менее плотных в периферические области планеты) приводят к выделению тепла. Температура в центральной части Земли порядка 5000 °С. Максимальная температура на поверхности приближается к 60 °С (в тропических пусты-нях Африки и Северной Америки), а минимальная составляет около -90 °С (в центральных районах Антарктиды).
Давление монотонно возрастает с глубиной от 0 до 3,61 ГП. Тепло из недр Земли передается к ее поверхности благодаря теплопроводности и конвекции.
Плотность в центре Земли около 12,5 г/см3.
6.3. Над поверхностью Земли
Земля окружена атмосферой. Нижний ее слой (тропосфера) простирается в среднем до высоты в 14 км; происходящие здесь процессы играют определяющую роль для фор-мирования погоды на планете. Температура в тропосфере падает с увеличением высоты. Слой от 14 до 50-55 км называют стратосферой; здесь температура возрастает с увеличе-нием высоты. Еще выше (примерно до 80-85 км) находится мезосфера, над которой на-блюдаются (обычно на высоте около 85 км) серебристые облака. Для биологических про-цессов на Земле огромное значение имеет озоносфера —слой озона, находящийся на вы-соте от 12 до 50 км. Область выше 50-80 км называют ионосферой. Атомы и молекулы в этом слое интенсивно ионизируются под действием солнечной радиации, в частности, ультрафиолетового излучения. Если бы не озоновый слой, потоки излучения доходили бы до поверхности Земли, производя разрушения в имеющихся там живых организмах. На-конец, на расстояниях более 1000 км газ настолько разрежен, что столкновения между мо-лекулами перестают играть существенную роль, а атомы ионизированы более чем наполо-вину. На высоте порядка 1,6 и 3,7 радиусов Земли находятся первый и второй радиацион-ные пояса.
Гравитационное поле Земли с высокой точностью описывается законом всемирно-го тяготения Ньютона. Ускорение свободного падения над поверхностью Земли определя-ется как гравитационной, так и центробежной силой, обусловленной вращением Земли. Зависимость ускорения свободного падения от широты приближенно описывается фор-мулой g = 9,78031 (1+0,005302 sin2 ) m/c2, где m —масса тела.
Земля обладает также магнитным и электрическим полями. Магнитное поле над поверхностью Земли складывается из постоянной (или меняющейся достаточно медленно) «главной» и переменной частей; последнюю обычно относят к вариациям магнитного по-ля. Главное магнитное поле имеет структуру, близкую к дипольной. Магнитный диполь-ный момент Земли, равный 7,98•1025 единиц СГСМ, направлен примерно противополож-но механическому, хотя в настоящее время магнитные полюсы несколько смещены по от-ношению к географическим. Их положение, впрочем, меняется со временем, и хотя эти изменения достаточно медленны, за геологические промежутки времени, по палеомагнит-ным данным, обнаруживаются даже магнитные инверсии, то есть обращения полярности. Напряженности магнитного поля на северном и южном магнитных полюсах равны соот-ветственно 0,58 и 0,68 Э, а на геомагнитном экваторе — около 0,4 Э.
Электрическое поле над поверхностью Земли в среднем имеет напряженность око-ло 100 В/м и направлено вертикально вниз — это так называемое «поле ясной погоды», но это поле испытывает значительные (как периодические, так и нерегулярные) вариации.
Геофизика — физика Земли — относительно молода. Все происходящее в недрах нашей планеты изучено пока еще далеко не полно.

ЗАКЛЮЧЕНИЕ
В заключение работы кратко отметим основные положения рассмотренные в рабо-те.
В ходе выполнения работы было рассмотрено происхождение планет, вопросы свя-занные с открытием других планетных систем, рассмотрены планеты и их спутники, строение планет, подробно рассмотрена планета Земля, ее форма, размеры, движение, внутреннее строение и поверхность.
Таким образом, солнечная система, это прежде всего Солнце и девять больших планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Кроме больших планет со спутниками, вокруг Солнца обращаются малые планеты (астероиды), которых в настоящее время известно более 6000 и еще большее число комет.
Возраст образования Солнечной системы около 4.5 – 5 млрд. лет тому назад.
Используя гипотезы образования Солнечной системы ученых в ХVII в., гипотезы 40г. ХХ века современные ученые позволили составить общую картину формирования Солнечной системы, которая образовалась в результате длительной эволюции огромного холодного газопылевого облака.
Когда Солнце «включилось», оно оттолкнуло остатки облака, оставив новорожден-ную Солнечную систему, состоящей из группы небольших теплых внутренних планет вблизи Солнца, несколько больших холодных внешних планет, маленьких ледяных комет на дальних границах, а также множество крошечных обломков. Все это случилось до-вольно быстро, по космическим меркам.
Подсчитано, что прошло не больше 100 миллионов лет со времени, когда облако начало сжиматься, до момента, когда зажглось Солнце.
В эту эпоху образования планет Солнце было окружено облаком пыли, состоявшей из песчинок графита (как в ка¬рандаше) и кремния (тончайший песок), а также, возможно, оксидов железа, смерзшихся вместе с аммиаком, метаном и другими углеводородами. Столк¬новения этих песчинок привели к образованию ка¬мешков побольше, диаметром до нескольких санти¬метров, рассеянных по колоссальному комплексу колец вокруг Солнца.
Вычисления, проделанные Голдрайхом, показали, что эти кольца были нестабиль-ны из-за взаимного притяжения, и поэтому камешки на ранних стадиях объединились в большие тела типа астероидов, за¬полняющих пространство между Марсом и Юпите¬ром и имеющих в диаметре несколько километров. В свою очередь нестабильной оказалась и система астероидов. Большие массы объединились в группы, которые наконец коллапси-ровали, образуя планеты.
Вначале Солнечная система состояла из планет и множества астероидов, еще не объединенных вместе и распределенных по очень сложным орбитам. Три миллиарда лет назад падение астероида на планету должно было быть явлением довольно частым; те не-бесные тела Солнечной системы, которые практиче¬ски лишены атмосферы (как Луна, Марс и Мерку¬рий), до сих пор несут на себе следы этих ужасных бомбардировок. На Зем-ле воздействие атмосферы уничтожило следы таких событий, и только недавно образо-ванные кратеры еще видны (один такой кра¬тер имеется в штате Аризона).
Вначале Солнечная система состояла из планет и множества астероидов, еще не объединенных вместе и распределенных по очень сложным орбитам. Три миллиарда лет назад падение астероида на планету должно было быть явлением довольно частым; те не-бесные тела Солнечной системы, которые практиче¬ски лишены атмосферы (как Луна, Марс и Мерку¬рий), до сих пор несут на себе следы этих ужасных бомбардировок. На Зем-ле воздействие атмосферы уничтожило следы таких событий, и только недавно образо-ванные кратеры еще видны (один такой кра¬тер имеется в штате Аризона).
Наиболее близкие к Солнцу планеты сформирова¬лись в более горячей области, не-жели дальние плане¬ты; более того, вскоре после своего рождения Солн¬це пережило пери-од большой активности, когда его масса, уносимая горячим солнечным ветром, умень¬шалась с огромной скоростью (всего за несколько миллионов лет масса Солнца уменьши-лась вдвое).
Речь здесь идет о «стадии Тельца», получившей название по имени звезды, види-мой в созвездии Тельца. Раскаленное дыхание Солнца очищало межпланетное простран-ство от газов и остаточной пыли, перемешал их в сторону внешнего пространства. Дей¬ствительно, них планет (Юпитер, Сатурн, Уран и Нептун) и теперь встречаются в изоби-лии различные элементы, в то время как около внутренних каменистых планет их сравни-тельно мало. А вот иного мнения насчет происхождения комет до сих пор пет. Я рассмот-рел в общих чертах процесс рождения Сол¬нечной системы. Можно надеяться, что непре-рывно поступающие новые экспериментальные данные и прогресс в теории дадут ответ на некоторые еще не ясные вопросы. На это, возможно, потребуется несколько десятков лет.


СПИСОК ЛИТЕРАТУРЫ
1. Астрономия: Учебник для 11 класса, - М.: Дрофа, 2004.
2. Горелов А.А. Концепции Современного естествознания. - М. 1997
3. Допаев М.М. Наблюдения звездного неба. – М.: Наука, 1978.
4. Дубнищева Т. Я. Концепции современного естествознания. Учебник под ред. акад. М. Ф. Жукова. 2-ое издание.— М.: ИВЦ "Маркетинг"; Ново¬сибирск: ООО «Издательство ЮКЭА» 2000;
5. Зельдович Я.Б., Новиков И.Д. Строение и эволюция Вселенной. - М., 1975.
6. Куликовский П.Г. Справочник любителя астрономии. - М.: Наука. 1988.
7. Найдыш В.М. Концепции современного естествознания: Учебник. — Изд. 2-е, перераб. и доп. – М.: Альфа-М; ИНФРА-М, 2004. — (в пер.).
8. Новиков И.Д. Эволюция Вселенной. - М., 1979.
9. Рузавин Г.И. Концепции современного естествознания. - М. 1997
10. Хокинг С. Краткая история времени. От большого взрыва до черных дыр. - М.: Питер. 2002.
11. Хорошеева Е.В. Концепции современного естествознания. - М. 1999
12. Энциклопедический словарь юного астронома, - М.: Педагогика, 1980.

Прикрепления: 1950583.jpg (14.9 Kb) · 3324109.jpg (59.0 Kb)


Хочешь личный форум для себя? Стань админом. http://film.topf.ru/viewtopic.php?id=6885
 
gzadorinaДата: Четверг, 29.08.2019, 17:17 | Сообщение # 3
Рядовой
Группа: Пользователи
Сообщений: 1
Репутация: 0
Статус: Offline
Тоже всегда интересно читать на тему космоса https://nauka.club/tests/planety-solnechnoj-sistemy-raspolozhenie-po-poryadku-i-kratkaya-xarakteristika.html, дома даже несколько энциклопедий есть.

Не обольщайтесь, интернет начался не с того момента, когда Вы впервые его посетили.
 
Форум » В помощь учащимся » Астрономия » Происхождение Солнечной системы (Реферат по астрономии)
  • Страница 1 из 1
  • 1
Поиск:


Besucherzahler ukrainewoman.ca
счетчик посещений
Goon Каталог сайтов